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The Stochastic Heat Equation: 
Feynman-Kac Formula and Intermittence 
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We study, in one space dimension, the heat equation with a random potential 
that is a white noise in space and time. This equation is a linearized model for 
the evolution of a scalar field in a space-time-dependent random medium. It has 
also been related to the distribution of two-dimensional directed polymers in a 
random environment, to the KPZ model of growing interfaces, and to the 
Burgers equation with conservative noise. We show how the solution can be 
expressed via a generalized Feynman-Kac  formula. We then investigate the 
statistical properties: the two-point correlation function is explicitly computed 
and the intermittence of the solution is proven. This analysis is carried out 
showing how the statistical moments can be expressed through local times of 
independent Brownian motions. 

KEY WORDS:  Stochastic partial differential equations; Feynman-Kac  
formula; random media; moment Lyapunov exponents; intermittence; local 
times. 

1.  I N T R O D U C T I O N  

We consider the linear stochastic partial differential equation (SPDE) 

v 
a,~,,(x) = ~ ~G(x) + G(x) ~,(x) (1.1) 
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where ~k,=O,(x), t>~0, is a scalar field in R t, d is the Laplacian, v is a 
positive constant, and t/, = q,(x) is a two-parameter white noise, i.e., 

E(r/,(x) q,.(x') )= 6( t -  t') 6 ( x -  x') (1.2) 

Equation (1.1), often called the stochastic heat equation, is a linearized 
model for the evolution of a scalar field in a space-time-dependent random 
mediumJ TM The parameter v then has the interpretation of the viscosity 
coefficient. The choice of the white noise as random potential corresponds 
to considering those regimes with very rapid variations, the type of turbulent 
flows. 

A traditional way to investigate the evolution of the field ~, is to study 
its moments. This method is important not only because it is constructive, 
but also because the moments themselves have a physical meaning, which 
is often more important than that of the individual solution. Molchanov, ~ )  
studying the moments of the solution of Eq. (1.1) on a lattice, ( t ,x)e 
R + x Z a, shows that the field ~O, has an intermittent behavior. From a 
qualitative point of view intermittent random fields are characterized by 
the appearance of sharp peaks which give the main contribution to the 
statistical moments. 

Our analysis extends the general picture in ref. 13 to Eq. (1.1) and 
improves some quantitative results. In the continuum case, the random 
potential is singular and a rigorous analysis of (1.1) is not completely 
trivial. In particular, white noise gives the same weight to all scales, with- 
out introducing any characteristic length or time. The physical requirement 
behind this choice is that the solution of (1.1), which is supposed to 
describe macroscopic phenomena, should not be too sensitive with respect 
to fluctuations occurring at arbitrary small scales. Due to the singularity of 
white noise, our results are, however, restricted to one space dimension. 

In this paper we construct the solution of the Cauchy problem 
associated with Eq. (1.1) via a generalized Feynman-Kac formula. The 
initial data are in a set in which distributions also are enclosed. In particular 
we are interested in initial functions which are either localized (6-type initial 
conditions) or spatially homogeneous (constant initial conditions). For 
the former case the stochastic evolution has the effect of smoothing the 
singularity: we prove that for any t > 0  the process O,(x) is continuous in 
the space variable regardless of the initial data. 

The Feynman-Kac expression allows us a rather complete analysis of 
the statistical properties of the solution. The two-point correlation function 
is explicitly computed. We then study asymptotic (in time) properties of the 
solution. In particular we focus on translation-invariant initial data, i.e., we 
assume q%(x)= const, and evaluate the moments of the process ~O,(x). This 
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result establishes that the solution of Eq. (1.1), following the definition 
given by Molchanov, 1~3~ has an intermittent behavior. They key point is a 
representation of the statistical moments in terms of local times for inde- 
pendent Brownian motions. This representation permits us to carry out the 
computations and obtain explicit formulas. 

Equation (1.1) arises in several other physical problems: it is satisfied 
by the partition function of a directed polymer in a two-dimensional 
random medium described by the random potential q.u~l It is furthermore 
related to the random growth of interfaces and to the Burgers equation 
with noise: introducing (Cole-Hopf transformation) h,(x) := v log ff,(x), it 
satisfies 

v 1 
ath,(x) = -~ Ah,(x) + -~ (Oxh,(x)) 2 + vr/,(x) (1.3) 

which is the so-called KPZ equation I1~ proposed as a (nonlinear) random 
model of growing interfaces. Here h,(x) is the height of the interface and v 
the surface tension. By differentiating (1.3) and defining u, (x ) := -a.,.h,(x), 
we get the Burgers equation with conservative noise 

v F 1 2 q 
O,u,(x) =~ Au,(x)-a.,. l~ u,(x) + vq,(x)/ 

L z J 
(1.4) 

which has been largely studied in the physical literature as a simplified 
model in complex phenomena such as turbulence, intermittence, and large- 
scale structure. A satisfactory mathematical theory of Eqs. (1.3) and (1.4) 
is, however, lacking. See Remark 3 after Theorem 2.2 for a further discus- 
sion. The relationship of (1.4) to (1.1) is also exploited in ref. 8, where 
white noise analysis techniques are used. The less singular problem of the 
Burgers equation with nonconservative space-time white noise is studied in 
refs. 2 and 6. 

To study rigorously the stochastic heat equation, we realize the white 
noise as the (generalized) derivative of a Wiener process: q, = O,B,. We can 
thus rewrite Eq. (1.1) as 

d~b , =-~ A~ , dt + ~b , dB, (1.5) 

Since it contains a nontrivial diffusion, the stochastic differential 4, dB, 
presents the well-known ambiguities. The correct choice is not a trivial point. 
In ref. 2, for example, a similar equation, where the random potential is 
the space integral of white noise, has been studied. It is there shown how, in 
order to obtain that the Cole-Hopf transformation of ~,, gives a solution 
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of the Burgers equation, the stochastic differential has to be interpreted in 
the Stratonovich sense. In the present case, as the random potential is more 
singular, the situation is more complicated. The Feynman-Kac  formula for 
the linear equation (1.5) when the stochastic differential is interpreted in 
the Stratonovich sense is not well defined. However, after a simple renor- 
malization--the Wick exponential--a meaningful expression is obtained. 
This renormalized Feynman-Kac formula solves Eq. (1.5) when the 
stochastic differential is interpreted in the Ito sense. When the Cole-Hopf  
transformation is performed this implies a Wick renormalization of the 
nonlinear term in Eqs. (1.3) and (1.4). 13"5~ 

We note that Eq. (1.5) in any dimension, with a noise regular in the 
space variable, has been studied in ref. 16, where the stochastic differential 
is interpreted in the Stratonovich sense and, more recently, in ref. 15 with 
both interpretations of the stochastic differential. The latter paper also 
discusses the white noise case in one space dimension. 

The paper is structured as follows. In the next section we introduce the 
mathematical apparatus and state precisely our results. In particular we 
review in some detail what is meant by intermittence and recall the basic 
definitions and properties of local times. 

In Section 3 we prove the Feynman-Kac formula; this allows us to 
establish an existence and uniqueness theorem for the Cauchy problem for 
the stochastic heat equation. We also prove some smoothness results for 
the realizations of the process. The representation in terms of local times is 
introduced and used for a technical bound. 

Section 4 is devoted to the proof of the statistical properties; here 
the representation in terms of local times plays a more fundamental role: 
using known results on their distribution, we reduce the proofs to straight- 
forward computations. 

2. PRELIMINARIES AND RESULTS 

2.1. Wiener Process and Stochastic Integrals 

Let B,, t~>0, be the cylindrical Wiener process on L2(R, dx). It is 
realized as a distribution-valued continuous process, i.e., the probability 
space (~, ~-, ~') is given by s = C(R+; 5~ here 5 p' is the Schwartz space 
of distribution on R, ~ is the a-algebra generated by the cylindrical sets, 
and ~ is the Gaussian measure with covariance 

E(B,( f )  B,,(g))= t ^ t '(f, g) (2.1) 

where f ,  g ~  are test functions, a ^ b = rain{a, b}, and ( - , - )  is the scalar 
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product  in L2(R, dx). We denote by ~ the natural  filtration of B,, i.e., the 
minimal a-algebra such that s ~ B s is ~ ,  measurable  for all s r I-0, t].  

Let 2 ,  t > 0, an L2(R, dx)-valued, ~ - a d a p t e d  continuous process such 
that  for any t > 0 

f2 E ds (2., 2,) < oo (2.2) 

We can then define the Ito integral of 2, with respect to the Wiener process 
a s  

(2., dB,) := (2~, e;) dB,(e,) (2.3) 
i = 1  

where {e;} is an o r thonormal  basis in L2(R, dx) and thus {B,(e;)} are 
independent one-dimensional  Wiener processes; the series is convergent,  in 
L'-(~'), by (2.2). 

We need a regularized version of B,, which is defined as follows. Let 
h ~ C ~ ( R )  be an even positive function such that  ~ dx h(x)= 1. Introduce,  
for ~c > 0, the mollifier 6~.(x) := xh(xx) and define BT(x) := B,(fk(x--. )). Its 
correlation function is 

E(B~(x) B~'(x'))=t ^ t'C~.~,(x-x'), C~.~., := 6~'A- 6~., (2.4) 

where -A- denotes convolut ion in space; if x = x ' ,  we use the notat ion 
C,~ := C~.K. 

For  x finite, B~" is a nice [e.g., C a ( R )  valued]  process; our  results will 
be obtained letting K ~ oo and showing we have meaningful expressions 
also in the limit. 

To  construct  the solution of equat ion (1.5) through a F e y n m a n - K a c  
formula, we need a stochastic curvilinear integral. We now define it for the 
regularized process B~. Let s ~ ~0~. be a H61der continuous function from 
[0, co) to R and s;=2-"it, i = 0  ..... 2", be a parti t ion of [0, t] ;  introduce 

. . . . .  B ~ B ~- M~, ( t ) : = ~ .  ( ~.,+,(~0.,.,)- .,.;(q~s,)) (2.5) 
i 

It is not difficfilt to verify that  M~'"(t) is a Cauchy sequence in L2(N); its 
limit defines 

K K , t !  MoO) := lim M,p (t), te [0, oo) (2.6) 
/ 1 ~  oo 

which is, under ~ ,  a continuous Gaussian process and an ~,, Martingale. 
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is 
If s~--* Z, is another function, the cross-variation of  M~(t) and ~' M r (t) 

(M,p, ~ M,.~' ),-- as cK.,,(q~,-~,) (2.7) 

We note that, since BT(x) is Lipschitz in x, this construction is a 
particular case of the general theory developed in ref. 7. 

Remark. In ref. 2 an analogous stochastic curvilinear integral was 
defined for the Brownian sheet; in that case it was proven to be meaningful 
for the nonregularized process. As can be seen from (2.7) the variance of 

t.: M~o(t ) is now tC~(O), which diverges when x ~ oo. As we shall see, this is 
the reason why the F e y n m a n - K a c  formula for the linear equation (1.5) 
with the Stratonovich stochastic differential needs a renormalization. 

2.2. Formulat ion of  the  Cauchy  Problem and F e y n m a n - K a c  
Formula 

Let us introduce the heat kernel 

(x2) 1 -~-t G,(x) := (2vnt)L/2 exp (2.8) 

We assume the initial da tum ~ko to be a positive Borel measure on R such 
that, defining 

it satisfies 

G, ~r ~ko(X) :=  f d~o(y) G,(x- y) (2.9) 

sup sup x/~ G, ~r ~ko(X) < oo (2.10) 
t ~ ( O ,  T ]  x ~ R  

for any T >  0. This allows a singularity of order t-t/2 as t--, 0 + and permits 
a delta-type initial condition. However, the application (t, x) ~ G, * ~bo(x) 
is smooth, e.g., differentiable, for any t >  0, x ~ R. 

In the study of the statistical properties we will focus on the cases of 
the Lebesgue and Dirac measures. 

We now formulate the Cauchy problem for the stochastic heat equa- 
tion (1.5), as an Ito equation, in a convenient mild form. 
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Defini t ion 2.1. Let $ , = ~ , ( x ) ,  t > 0 ,  be a continuous, ~,-adapted 
process such that for any T >  0 

sup sup ds ds' dy dy' G,_.~(x- y)2 
t e ( 0 ,  T ]  x e R  

x Gs_s . (Y-  y,)2 E(~b ,(y,)2) < oo (2.11) 

it is a solution of the stochastic heat equation if for any t > 0 

where 

~ , =  Gt 'k  ~bo+ G,_s*qG. dBs ~-a.s. (2.12) 

G,_, ~r ~, dB,(x) := (G,_ s(x - - )  ~k,., dBs) (2.13) 

is the Ito integral defined in (2.3). 

We remark that, even if the initial datum $% is a measure, we have 
formulated the stochastic heat equation for processes which are, for any 
t > 0 ,  function-valued and satisfy (2.11). We will actually prove that the 
solution is C~ as t > 0. 

The initial datum ~b o is satisfied in the distribution sense. In fact, using 
(2.11) and (2.12), it can be verified that if ~b, is a solution of the stochastic 
heat equation, for a n y f E  C~ and uniformly bounded, 

,limo+ f dx f(x) ip,(x):  ; dlPo(.X ) f(x) (2.14) 

where the limit is ~-a.s. 
We first define precisely the Feynman-Kac  formula at the level of the 

regularized Wiener process B~'. Let bs, s ~ [0, t], be the Brownian bridge, 
with diffusion coefficient v, between y and x; i.e., the Gaussian process with 
mean y + (x - y)st  - 1 and covariance F(s', s) = vt-  ls'(t - s) where s' ~< s. In 

b particular, bo= y, b,=x.  We denote by P,. ..... the law of b; we write pb.,. I' X;I  

when we want to indicate explicitly the dependence on v. We stress that b 
is independent of the cylindrical Wiener process B. 

Let finally 

dPb.,.., := f d~o(y) G , ( x -  y)dP~ ...... (2.15) 
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b b The expectations with respect to dP.,. v, and dP ..... are denoted by E b x ,  v I 
b and E.,..,, respectively. They are not to be confused with the expectation 

with respect to ~ ,  denoted by E. 
Let us consider the regularized form of Eq. (2.12), 

f2 O~=G,*tpo+ G,_,~O~dB~ (2.16) 

Its solution can be expressed, as shown in the next section, by the following 
generalized Feynman-Kac formula: 

~,~(x) "-. - E x.b, gxp{M~(t)} (2.17) 

where M~(t) is defined pathwise b dP,_,-a.s, by (2.6) and 

gxp{M~(t) } := exp{M~( t ) -  �89 (M~,  M~),} = exp{M~(t) - �89 

(2.18) 

in the martingale terminology is the Girsanov exponential of M~, or the 
Wick exponential in the language of quantum field theory. In our context 
both of these characterizations are useful. The diverging term C~(0) 
provides the aforementioned renormalization on the Feynman-Kac for- 
mula and a meaningful expression is obtained in the limit • ~ ~ .  

T h e o r e m  2.2. For any t > 0 ,  x ~ R ,  ~7(x) defined in (2.17) is a 
Cauchy sequence in L2(#); denoting by tp,= ~,,(x) its limit, we have: 

(i) For all p>~l, $~(x)~$ , (x )  in Le(~) and ~-a.s. The con- 
vergence is uniform for x 6 R and for t in compact subsets of (0, or). 

(ii) $, is the unique solution of the stochastic heat equation as 
formulated in Definition 2.1. 

(iii) For ( t , x ) 6 ( 0 , ~ ) x R ,  (t,x)~--~$,(x) is ff-a.s. H61der con- 
tinuous. The H61der exponent is a < 1/2 in space and ~z < 1/4 in time. 

(iv) For any (t,x)~(O, ov)xR, ~, , (x)>0~-a . s .  

The key point in the proof of the theorem is to establish that $~:(x) is 
a Cauchy sequence. The important statement (iv) is essentially contained in 
Mueller, 1~4~ to which we will refer. 

Remark I. We have considered, for notational simplicity, deter- 
ministic initial data; however, our results are easily extended to random 
initial data. 

Remark 2. We have considered positive initial data because in the 
physical problems we have outlined one is mostly interested in positive 
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solutions of (2.12); however, as the equation is linear, the solution with 
signed initial datum can be constructed by superposition. 

Remark 3. By the results in Theorem 2.2, we can construct, as a 
C~ process, h,(x):=vlog~O,(x), which describes the interface 
growth in the KPZ model (1.3). Analogously the random field for the 
Burgers equation with conservative noise can be rigorously defined, as a 
distribution-valued process, by 

u,(f) := v f dx f ' (x)  log O,(x) (2.19) 

where f i s  a test function. However, as the nonlinear terms in Eqs. (1.3) and 
(1.4) involve ill-defined operations between distributions, those equations 
do not have a rigorous meaning when the cutoff is removed. 

2.3. Local Times and Statistical Properties 

We recall the basic definitions and properties of the local times; for a 
comprehensive discussion see, e.g., ref. 17, a book that will be quoted when 
we need specific results. Given a continuous semi-martingale X and a ~ R 
there exists an increasing process L'/(X), called the local time of X in a, 
such that 

IX, - al = IXo - a[ + sgn(X~. - a) dX,. + U[(X) (2.20) 

where sgn(x) = 1 if x > 0  and sgn(x) = - 1 if x ~ 0 .  
The process LT(X) can be described informally as S'o6(X~.-a)d(X, X).,., 

where &(.) is the Dirac delta function. The following result is instead 
rigorously proven: 

L~'(X)= lim 1 ~ '  I(~.,+,)(X,)d(X, X)s (2.21) 
~ 0  + 8 a  o 

where 1,4 is the characteristic function of the set A and the limit is almost 
surely. 

We will consider only the local times of the Brownian bridge and of 
the Brownian motion; in both cases d(X, X ) , =  v dr. For notational con- 
venience we define the local times using the measure dt in (2.21), so that 
our local times are v-~ the usual ones; thus the local time LT(X ) measures 
(with respect to Lebesgue) the time that X has spent in a. We shall use the 
notation L,(X) := L~ 
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The statistical moments  of the field ~,, can be expressed through local 
times of Brownian bridges as stated in the following proposition. 

P r o p o s i t i o n  2.3.  Let b~=(b~ ..... b"), s~ [0, t] ,  be n independent 
Brownian bridges between j~= (y~ ..... y,,) and x. Then 

E(~0,(x)")=J" fi d~o(yJG,(x-y,).Eb_ "" (exp ~ L,(bi-bY)) (2.22) 
i =  1 y , x ; t  ~, i < j  

The two-point correlation function is given, for t ~< t', by 

r~(q,,(x) ~,,(x')) = ~ a'~o(y) a~o(y') az O,(x- y) G, (x ' -  y') 

x G,,_,(z) E~:~'.v..,...,.+_.:,(e/-'(b)) (2.23) 

Let us introduce the notat ion 

1 r 
q~(~) " -  (2~) 1/2 J'-~o dye -y'/z (2.24) 

for the Gaussian distribution. 
When the initial datum is either the Lebesgue or the Dirac measure, 

Proposit ion 2.3 has the following corollaries. 

C o r o l l a r y  2.4.  If ~b o is the Lebesgue measure, we have 

E(~,,(x) ~b,(x')) = ds (~zvs3)i/-------~ 2 exp + ~ 
4vs k\  2v / ] 

(2.25) 

C o r o l l a r y  2.5.  If ~b 0 is the Dirac measure in 0, we have 

1 [ x2+(x')21 ' 
E(~,,(x) ~,,(x')) = ~ exp 2vt J ~o 

I x - x ' l  1 
d s - -  (4gvt)'/z [-s3( 1 - s)]  1/2 

,sl}{, 
• (2,26) 
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In particular, 

E(~b,(x)2)=~vte-X2/" l 

1387 

t 1/2 
+ (-~)1/2 e ' /4~ ( (~ - -~v) ) ]  (2.27) 

2.4. Moment  Lyapunov Exponents and Intermittence 

Before stating our result, we briefly review the moment approach to 
intermittence in space-time-dependent random media. TM 4, ~3) 

Let the process q~,(x) be homogeneous and ergodic with respect to 
translation of the space variable; its moments 

m,,(t) := E(cp,(x)") (2.28) 

do not depend on x. The n-moment Lyapunov exponent can be defined if 
the limit 

?,, := lim log m,,(t) (2.29) 
, ~  t 

is finite. The process r is intermittent if the strict inequalities 

1 1 
?, < ~ ' 2 <  "-- < - 7 . <  ""  (2.30) 

n 

are satisfied. 
To explain the rationale behind this definition, let ~ (y~, ~2/2) and 

consider the following random set: 

B,.~ := {x: q~,(x)>e ='} (2.31) 

The ergodic theorem ensures that the volume density of this set 

VoI(B, ~ n {Ixl < R } )  
p,,= := lim ' (2.32) 

R ~  V o l ( { I x l < R } )  

exists and is given by P{~o,(x)> e"}. By the Chebyshev inequality we then 
have 

p,.==P{q~,(x)>e"} <~e-='E(~o,(x))~e -t~-~'~' (2.33) 

The notation ~ denotes logarithmic equivalence, i.e., 

log f ( t )  - log g(t) 
f ( t )  .,~g(t) r lim - 0 (2.34) 

, - ~  t 

For large t the density of the set B,,~ is thus exponentially small. 
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The second moment  can be written as 

m 2 ( t ) = E ( q ~ ( x ) ) =  ~ . z . E ( c p T ( x ) l z , . ) + E ( ~ o , ( x ) l R \ B ,  ~) (2.35) 

where 1B,., is the indicator of the set B,.,. The second term in (2.35) does 
not exceed e2~'; furthermore, e2" <~ er-"; hence 

m2(t)  ~ E(q0~(x) 1 n,.,) (2.36) 

Therefore the second moment  is generated almost entirely by the sharp 
fluctuations of the field r concentrated in the set B,.,,  whose density, 
as we saw above, is exponentially small. 

In the same way, choosing a parameter  sequence {~,,} such that 

1 1 
- 7,, < c~,, < (2.37) r/ ~ 7,7+ l 

we obtain a hierarchical sequence of sets 

B,,=I ~ B,,~,. ~ B,,~ ~ --- (2.38) 

Each of them is a collection of small islands, the distribution of which is 
exponentially small. Repeating the same argument for the second moment,  
it is easy to understand how every moment  is generated by the values that 
the process cp,(x) assumes in the corresponding set of the hierarchy. This 
shows how the strict inequalities (2.30) imply the presence of a peculiar 
local structure, hence the name h~termittence. 

We now discuss the moment  Lyapunov exponents for the stochastic 
heat equation. We consider deterministic translation-invariant initial data, 
i.e., we assume r to be the Lebesgue measure. For  such initial datum we 
can state the following theorem. 

Theorem 2.6. The nth moment  of ~,(x)  is given by 

,} ((.r 1) 
E ( ~ k ' ( x ) " ) = 2 e x p [  4Iv \ \  ]-2"v t )  1/2) (2.39) 

In particular, the n th-moment  Lyapunov is 

1 
?" = ~ . v  n(n2 - 1 ) (2.40) 

Remark .  In the directed polymer case one is interested in a delta 
initial condition fie = 6o and in evaluating the moments  of ~, := ~ dx ~b,(x); 
see ref. 12. They are still given by formula (2.39). 
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The cylindrical Wiener process B,(x) is homogeneous and ergodic with 
respect to translation of the space variable and we are considering 
homogeneous and ergodic initial datum with respect to spatial trans- 
lations, so the process ff,(x), being a functional of B,(x), is homogeneous 
and ergodic. We can thus conclude, by Theorem 2.6, that for each 
(positive) value of the parameter v, the process ff,(x) has an intermittent 
behavior. 

As we remarked in the introduction, the stochastic heat equation has 
been extensively studied on a lattice/TM The discrete case has some differen- 
ces from the continuous one. The renormalization term C~(0) is finite and 
no regularization is needed in constructing the solution. All the Lyapunov 
exponents (n > 2) are estimated as functions of ~'2, of which there is not an 
explicit expression, but only the qualitative behavior as a function of the 
viscosity v: it tends to one in the limit v --* 0 and to zero in the limit v ~ ~ .  
In the continuum case instead, the moment Lyapunov exponents diverge in 
the limit v --* 0. 

We note formula (2.40) has been obtained in ref. 9, showing that the 
nth-moment Lyapunov exponent is given by the lowest eigenvalue of an 
n-body Schrrdinger operator with a two-body delta potential; the result 
(2.40) is obtained when the self-interactions are ignored. Our approach is 
instead purely probabilistic: the use of local times permits an exact and 
rigorous calculation of the statistical moments, from which the Lyapunov 
exponents are then obtained as leading order. Furthermore, the discussion 
of the stochastic differential and the renormalization of the Feynman-Kac 
formula give a clear mathematical meaning to the physical hypothesis of 
ignoring self-interactions. 

In the physical literature c9' 12) the free energy of a directed polymer in 
a random environment is obtained from (2.40) via the replica method. 
The exact formula (2.39) shows explicitly the problems connected with 
the analytic continuation: the argument of �9 becomes imaginary if 
ne (0 ,  1). 

3. F E Y N M A N - K A C  F O R M U L A  

This sectiofi is devoted to the proof of Theorem 2.2. We first show that 
the Feynman-Kac  formula (2.17) is meaningful when x--, ~ .  We next 
prove that the limiting process is the unique solution of the stochastic heat 
equation. Finally we establish the HSlder continuity of the trajectories. The 
representation in terms of local times is introduced and used to obtain the 
necessary bounds on the moments of ~b~:. 
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The first step in the proof of Theorem 2.2 consists in verifying that 
~ ' ( x )  defined in (2.17) is a Cauchy sequence in L2(~). Let dP~i , be an 

b independent copy of the measure dPx, ,. We have 

~.(q~,(x) q C , ( x ) ) 2 =  b b, - Ex. ,Ex. ,E[(gxp{Mb(t)  } -- gxp{M~'( t )  }) 

• (gxp{M~,(t)}  - gxp{M~;( t )})]  (3.1) 

Since M~(t), under ~ ,  is a Gaussian variable, the expectation can be 
explicitly computed; recalling (2.7), we get 

E ~ ( r  - q~ 7 ' (x ) )  2 

-Ex. ,Ex . ,  exp d s C ~ ( b , - b ' A - 2 e x p  dsC~.~,(b,-b'~) 

+ e x p  d s C ~ , ( b , - b ' )  

= ~ dOo(y) dOo(y') G,(x - y)  a , (x  - y') 

x E b'2~ exp ds C,~(b~) - 2 exp ds CK,~, (b,) y- -  y',O;t 

+ e x p  ds C~,(b,) (3.2) 

as b s -b ' s  is, in law, the Brownian bridge from y - y '  to 0 with diffusion 
coefficient 2v. 

Let 

f2 L'[(b) := ds C~(bs) (3.3) 

The proof that the right-hand side of (3.2) converges to 0 as x, x' --. oo will 
be completed after the next two lemmata, which provide the necessary 
bounds on L~(b). They are based on elementary properties of the local 
times. 

Lemma 3.1. Let L,(b) be as defined in (2.21). For any p ~ [1, oo), 
there exists a constant c > 0 such that for all t ~ [0, oo) 

sup liLT(b) - L,(b)[[ LPtd~.o;,) ~< ctl/4k-1/2 (3.4) 
z E R  
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ProoL By scaling we have, in law, L,(b)=tmLl('b), where T, s, 
s e [0, 1 ], is the Brownian bridge between zt-~/2 and 0. On the other hand, 
introducing h := h -k h and recalling the definition of C~, we have 

L~(b) = rc ds h(xb~) Law tx ds h(tl/2x'~) (3.5) 

Let us recall the occupation time formula (ref. 17, Chapter VI, 1.6), 
which states that for any positive Borel-measurable function f ,  the following 
identity holds b . dP.,..o:,-a.s.. 

f ds f(b~)= da L~(b) f (a)  (3.6) 

Using the identity (3.5) and the occupation time formula (3.6) and 
recalling the normalization ~ da h(a) = 1, we have 

II Z~'(b) - Z,(b)ll Lp~a~.o;,) 

= t 1/2 tl/2x f da "h(tl/2xa) L'~(b)- Ll(b) 
LP(dl~z t I/2,o; i ) 

<~ t 1/2 ~ da "h(a) IlZ~l'"~l-'(b) - Ll(b)ll Z,td~,-~/2.0;,~ 

<<, c, t uz f da "h(a)(a(tU2~:) -1)u2 = ctU4x-l/z (3.7) 

where, in the last inequality, we used the L p H61der continuity of exponent 
1/2 of the local time of the Brownian bridge (ref. 17, Chapter VI, 1.8). | 

I . emma 3.2. For any p > 0, T >  0 there exists a constant c > 0 such 
that, for any x > 0, 

sup Eb.o;,(e pL'Ib)) <~ c (3.8) 
z ~ R .  t e  [ O , T ]  

ProoL Retaining the notations introduced in the previous lemma, by 
scaling and the occupation time formula (3.6), we have 

E~,o;,(exp[pL~(b)])=E~,-,a,o;,(exp[ptU2Idah(a)L~t"a~'-~(b)]) 

b ~< E.-t-,/2.ozt f da h(a) exp[pt~/2L~U'a~)-'(b)] (3.9) 

where we used the Jensen inequality. 
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The bound (3.8) is then proven once we show that there exists c~ > 0  
such that for each 2 ~ [0, A] 

b sup E_. O;l(exp[2L~(b)] ) ~< cL (3.10) 
a, z E R  

The intuition about the local times suggests that the supremum in 
(3.10) is attained for a = z = 0; a computation shows that then the expecta- 
tion is finite. We will prove this fact, introducing appropriate stopping 
times and reducing to the local time in 0 for the Brownian bridge from 0 
to 0. 

Let us introduce, for the Brownian bridge b starting from z and arriving 
in 0 at time 1, the stopping time 1", := {inf t: b,=a} and denote by P~.: its 
distribution. Using the strong Markov property and the additivity of the 
local time, we have 

I 

E:t"~ fo Pa .(dt) b ---- , -  E a ,  o : l  _t(e ;'L~-'(b)) 

= ~ Po,:(dt) E~,.;, ,(e ;'c~-,(~)) (3.11) 

In the last identity we used the time-reversal property of the Brownian 
bridge, i.e., if b~, se  [0, r ] ,  is a Brownian bridge from a to 0, then 
~,, := b . . . .  is, in law, a Brownian bridge from 0 to a. 

We now introduce, for the Brownian bridge b starting from 0 and 
arriving in a at time l - t ,  the stopping time T, := {infs: b , =  a} and 
denote by P,., its distribution. 

We can then write (3.11) as 

E~.o:l(e ~-L~(b)) = P..:(dt) 

= (dt) 

P..,(ds) E.b.:l_, .(e ;'L7 . . . .  (T,)) 

P..,(ds) Eobo:l(e ;'[l . . . .  ~'/2L,(b)) (3.12) 

The last identity is obtained by translation and scaling. 
The right-hand side of (3.12) can now be bounded using the following 

result (see ref. 17, Chapter XII, 3.8). If b,, s e  [0, 1], is a Brownian bridge 
(with diffusion coefficient v) from 0 to 0, then, in law, L~(b) = (27) t/2, where 
7 is an exponential random variable with mean v- t .  | 

Proof of Theorem 2.2. We conclude the proof that O~(x) in (2.17) 
is a Cauchy sequence in L2(#'). By Lemmata 3.1 and 3.2, we have 
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~b.2,. ds C~(b,)- exp ds C~ ~, ~ . I '  -- y ' ,O;t  

<~ ds C~(bs) + exp ds C~.~,(b,) 

~< cl(x ^ x ' )  -1/2 (3.13) 

where cl is independent of y, y ' e R ,  t s  [0, T].  
Recalling (3.2) and the hypotheses (2.10) on 0o, we have thus proven 

E(ffl~(x)--~ll~'(x))2<~cl[Gt~r 0o(X)] 2 (to A tr ~<C(/r A tO') - ' /2  (3.14) 

uniformly for x e R and t in compact  subsets of (0, ~ ) .  
F rom the L2(~) convergence and L e m m a  3.2 we get also 

IIG(x)II z.=~l ~ cG, * Oo(X) (3.15) 

where c is independent of t e [0, T],  x e R. 
F rom the above estimate we have 

f~ ds I~ ds' f dy dy' G t_ , (x -  y)" G,._s,(y- y')2E(~b~,(y')'-) 

<~ c f~ ds f~ ds' f dy dy' G,_s(x-  y)2 G~_, ,(y-  y') 2 

• (s') -~/2 Gs, * tPo(y') (3.16) 

where we used assumpt ion (2.10) and the positivity of ~b o. 
The bound (2.11) follows then from inequality (3.16) noting that  

G,(x)2=(4rtt)-1/2G,/2(x ) and using the semigroup proper ty  of the heat 
kernel. 

We prove the other statements of the theorem. 

(i) Let n be an even integer; the L"(t~) norm of ~b~'(x) can be com- 
puted analogously to (3.1). Let b =  (b I ..... b") be n independent Brownian 
bridges between Yi and x in time t. Let L~(b ~- b j) := ~ ds C~(b~.- b~); we 
have 

(exp Z c ,3,7, 
i =  1 i < j  
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where, by Lemma 3.2 and condition (2.10), c is independent of x > 0, x e R, 
and t in compact subsets of (0, oo). 

Let p > 1; by the Cauchy-Schwartz inequality 

KX • X I1r ) - r  (-)IIL,~,) 

<~ 11r ' 11r162 <'-~)/',2,, - ,,<~,) (3.18) 

which converges to 0 by the LZ(~) convergence and the uniform bound 
(3.17). From the LP(~) convergence of r and Lemma 3.2 it follows that 
the bound (3.15) is also in LP(d..~): 

114',(x)ll ~-,(d~ <~ cGt ~ Co(X) (3.19) 

To prove the ~-a.s. convergence, we note that, by the Borel-Cantelli 
lemma, it is enough to show, for some p > 1, ~ > 0, there exists c > 0 such 
that for any x > 0, x E R, and t in compact subsets of (0, oo) 

1 
E 1 0 7 ( x ) -  r  p ~< c ~, += (3.20) 

The bound (3.20) holds for p = 6  with c~= I/2. This can be proven 
computing, as in (3.1) and (3.2), the L 6 ( ~ )  n o r m  of r162 It can 
be written as a sum of many (i.e., 2 6) terms; they can be associated in such 
a way that each of them contains the product of at least three factors of the 
form {exp[LT(b+-bJ)]-exp[L,(bi-bJ)]}. Proceeding as in (3.13) and 
using again Lemmata 3.1 and 3.2, we obtain the bound (3.20). We omit the 
tedious algebraic details. 

(ii) The bound (2.11) has already been proven. To conclude that r 
is the solution of the stochastic heat equation, we first verify that r in 
(2.17) is the solution of (2.16). 

From definitions (2.17) and (2.15), using the Markov property for the 
Brownian bridge, we have 

f~ c,,_s 07 dBT(x) 

I~ i dOo(Z) dy G,(z- y)G,_s(y-x)E b, = ,, ,(#xp /t Mb(s) } ~  ) dB'~(y) 

= dOo(Z) a,(z-x) E~.x:,(#xp{M;(s) } dB~(b,)) (3.21) 

where we used the expression for the transition probability of the Brownian 
bridge. 
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By the definition of the stochastic curvilinear integral (2.5), dB'~(bs) 
equals dM~(s). Recalling that 8xp{M~(s)} is the Girsanov exponential 
(2.18), we easily compute the stochastic integral in (3.21), obtaining 

I d~Oo(Z) G,(z-  x) E~,x:,(gxp{M~(t)} - 1) = $ ~ ( x ) -  G, "~" Go(X) (3.22) 

which proves the claim. 
As ~b~'(x) converges to ~b,(x) uniformly for t in compact subsets of 

(0, oo), x ~ R, (t, x ) ~  ~b,(x) is ~-a.s. continuous. Thus for t > 0 the process 
~,, is, by construction, o~,-adapted, continuous, and C~ Since $ ,  
satisfies (2.16) and converges to ~p,, once we show 

lim Gt_s'it ~sdB,(x)-  G,_s-k ~, ~ = 0  (3.23) 
~ r  

we can conclude that ~b, satisfies, ~-a.s., Eq. (2.12). 
To prove (3.23) let us consider first 

a._., (:.- 

= Io ds f dy G ,_ , (x -  y)2 E(~, ( y ) _  O:(y))2 (3.24) 

Using (3.2), Lemmata 3.1 and 3.2, and (3.15), we can bound it by 

f: <~ c2~: -1/2 ds [s( t -s)]  - m  G, ~ ~ko(X)~<c3x -1/2 (3.25) 

where we used the hypothesis (2.10) on 0o. 
On the other hand, 

)'- 
E Gt_s * O~(dB, - dB~)(x) 

f: = E  ds (G ,_ , ( x - . )O~ , ( l - f~+C~-3~)G,_s (X- . )O~)  (3.26) 

We consider just the term with (1-6~) ;  the other one is analogous. It can 
be bounded by 
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ds dy dy' [G,_,(x - y)2 6k(y -- y ' )  II~PT(Y)II z.-'t~*~ IltPT(Y) -- ~PT(Y')II ot~) 

+ Gt_~.(x- y) 6k(y -- y') II~'s~(Y)ll 2 L2(~ ) 

x ]G,_ ~(x - y)  - G , _ , ( x  - Y')I ] (3.27) 

The first line vanishes in the limit k ~  oo by (3.15), the continuity of 
x--* O7(x) and the L2(~)  convergence (uniform in x) of O~'(x). For  the 
other term we note that, by the dominated convergence theorem, we can 
pass to the limit inside the time integral and conclude it converges to 0. 
Together  with (3.25) this implies (3.23). 

We finally prove uniqueness in the class of processes satisfying (2.11). 
Since the equat ion is linear, it is enough to show that any solution of (2.12) 
with 0 initial da tum is identically 0. For  such a solution we have 

(3.28) 

Iterating (3.28) and using the condition (2.11), we get 

sup E(~,(x))2 = sup ds, . . ,  ds,, d y , . . . d y , , G , _ , , ( x - y l )  2 
.,:ER x ~ R  

x . - -Gs ,_ , -  s,(Y,,- l - Y n )  2 E(~,.(Y,,) z) 

~ c s u p  I 'ds , . . . f]"-~ds, ,_2~ dy , . . . d y , , _2G,_ , , ( x -  y,)  2 
x ~ R  0 

x . . .  Gs,_3 - , ._  2(Y-- 3 - Y,,- ,)2 (3.29) 

which converges to 0 as n ~ oe. 

(iii) We first show the H61der continuity of t ~ ~O,(x). Thanks  to the 
bound (3.15), it can be easily verified that for any t > 0 ,  6 > 0  there exists 
c such that for any h > 0, x ~ R, 

a , + j , _ s * ~ , , d B , ( x ) -  G , _ , *  <.ch ~/4-~ (3.30) 
L2(B ~ ) 

By an application of the Burkho lde r -Dav i s -Gundy  inequality (see, e.g., 
ref. 17, Section 4.2) and using (3.19) instead of (3.15), we can prove the 
same bound also in LP(,~). We omit the details; see, however, ref. 2 for an 
analogous estimate. Using Eq. (2.12) and the K o l m o g o r o v  criterium, the 
~-a.s .  H61der continuity follows. 
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The following bound is proven with the same argument as above. For 
any p >  1, t > 0 ,  &>0 there exists c such that for any h > 0 ,  x ~R ,  

f~ G,_s~r t~sdBs(x+h) -~G,_s~bsdBs(x )  zp~, <~ch~/2-6 (3.31) 

This implies that x~--~b,(x) is ~-a.s. H61der continuous with exponent 
< 1/2. 

(iv) Let first note that a comparison principle holds. Let r i =  1, 2, 
be the solution with initial datum ~b~; from the linearity of the equation 
and the Feynman-Kac formula we have that ~b~ ~< ~b~ (as measures) implies 

V(t, x) e (0, oo) x R, q;~(x)<~Z,(x) ~-a.s. (3.32) 

For initial conditions which are absolutely continuous with respect to 
Lebesgue and whose density is continuous and with compact support the 
strict inequality ~k,(x)> 0 is proven in Mueller ~14~ up to an explosion time 
which is infinite by our results. 

Using Mueller's result and the comparison relation (3.32), we prove 
statement (iv) for initial data with continuous density with respect to 
Lebesgue. General initial data are then reduced to this case thanks to the 
Markov property and the fact that they became continuous in space in an 
arbitrary small time. l 

4. S T A T I S T I C A L  P R O P E R T I E S  

In this section we prove the explicit formulas for the correlation 
functions and the intermittent behavior of the solution we constructed. 
Proposition 2.3, which allows us to express the moments of ~b, in terms of 
local times, is a straightforward consequence of the machinery already 
developed. Corollaries 2.4 and 2.5 follow then from known results on the 
distribution of local times. Finally, Theorem 2.6 exploits elementary 
properties of the local times: the nth moment is computed, reducing it to 
the evaluation of an exponential moment for the local time of a single 
Brownian motion. 

Proof of Proposition 2.3. For any integer n, by Theorem 2.2(i), 

E(~b,(x)") = l im E(q/~'(x)") (4.1) 
K ~ o o  
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Introducing n independent copies of b and computing the expectation with 
respect to t~, we have 

E(~b:(x)~)=~i~=, d~bo(yi) G,(x- yi).E gy,~:, exp 2 ~ dsC~(b~,-b~) 
( . i<j  *'0 J , /  

(4.2) 

By Lemmata 3.1 and 3.2, the right-hand side of (4.2) converges to 

Ihd~o(Yi)  G,( x -  g (  ) yi)-Ey, x;, exp ~ Lt(bi-b j) (4.3) 
i =  1 i < j  

which proves (2.22). The proof of (2.23) is analogous. | 

Proof of Corollaries 2.4 and 2.5. If ~'o is the Lebesgue measure, we 
can express the correlation functions in terms of local times of Brownian 
motions. Let fls, s i> 0, be the Brownian motion, with diffusion coefficient 
v, starting from x; denote by dP~ its law. Realizing the Brownian bridge as 
conditional Brownian motion, we have 

dp~.v= f dy b.v G,(x- y) dPy x;, (4.4) 

By (2.23) we can thus express the correlation function as 

E(~t t(x) r = ElL 2 ' -  x - x' (exp L,(fl))=E~o'Z'(exp L~- x'(fl)) 

= Eg'*(exp[(2v) - m  L(,":-x')/(2~)la([3)]) (4.5) 

where the last identity is obtained by scaling. Let ~ :=(x-x')/(2v) m, 
introduce the stopping time T~ := inf{s:/~ = ~}, and denote by Pr its 
law. By the strong Markov property and the additivity of the local time we 
have 

Eo p. l(e(Z,,)-,/2 Lfip)) = f~ P~(ds) EoO(e (2:')-ta c,_.,(#)) 

e -r fo e"(2v)-'a =2 ds (2~:s3)t/2 dy G,_~(y) - (4.6) 

where we used the explicit expression for Pr (ref. 17, Chapter III, 3.7) 
and for the law of L,(fl), ref. 17, Chapter VI, 2.2. Equation (2.25) is just a 
convenient rewriting of (4.6). 

Corollary 2.5 is proven following the same steps. When @o(dx)= 
6o(dx), from (2.23) we have 

1 e_t.~+~.,,)q/2~, ~.~ t(e ~'/2~)L~)) (4.7) E(~b,(x) ~b,(x')) = ~ Eo. (x- ~,)/(2,.,),I~. 
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On the other hand, by the time-reversal proper ty  of the Brownian bridge, 

wb ' l  t~ l~b'l [~ P.(ds) b. l  ~o.~:1~ ~ , = ~ , .0 ; t~  ~ = E 0 , o :  ~ _s(e 2Ll<b)) 

(4.8) = ~ 0 , 0 ;  1 ~.~ ! 

where P~(ds) is the law of the stopping time T. :=in f{ t :b ,=a}  for the 
Brownian bridge from 0 to a in time 1; realizing it as a conditional 
Brownian motion,  it can be verified that  

la] e-~a2/2)~l - s)/s ds Pa(ds) - 1_2~s3 ( 1 - s ) ]  J/z (4.9) 

The formula (2.26) follows then from (4.7)-(4.9) and the following 
result (see ref. 17, Chapter  XII,  3.8). If  b is a Brownian bridge (with diffu- 
sion coefficient I)  from 0 to 0 in time 1, the local time L~(b) has the same 
law of (2~,) m, where ), is an exponential  r andom variable of mean 1. I 

Proof of Theorem 2.6. As in the proof  of Corol lary 2.4, we express 
the moments  of ~k,(x) in terms of the local times of independent Brownian 
motions. Let f f :=(f l~  ..... fl") be n independent Brownian motions with 
diffusion coefficient v; from Proposi t ion 2.3 we have 

E(0 , (x  ) ) = E  x exp ~ L,(fl '  (4.10) 
i < j  

where we used (4.4). 
By the T a n a k a  formula (2.20) we have 

where 

i j 1fl,-fl ,  l = 2vw, + 2v ~ L , ( f l ' - f l  j) 
i < j  i < j  

(4.11) 

1 sgn(fl~ - fl~) i �9 d ( f l s -  flj) Wt "~  ~ i 

It can be rewritten as 

(4.12) 

w,=~vv i~l ;i isgn(fl~- fl~) dfl~ (4.13) 
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from which we get 

<w,w>,=-~v [n--1-2(i--1)]2= tn (n z -1 )  
i=t 4v 3 

(4.14) 

By the Levy characterization theorem w is thus, in law, a Brownian motion 
starting from 0 and with diffusion coefficient n(n 2- 1)/12v. 

Using a deterministic procedure in (4.11), the Skorohod lemma (see 
ref. 17, Chapter VI, 2.1), we have 

L,(fl '-f l  j) = s u p  ( - w s )  (4.15) 
i < j  s<~t 

Recalling (4.10), we have thus proven 

E(~b,(x)") = E~'"(exp{sup ( -ws )} )  
s<~t 

}) sup ( - f l s )  (4.16) 
S ~ t  

from which (2.39) follows by the reflection principle: if fl is a Brownian 
motion starting from 0, then sups,<, ~. has the same law as I~,[ (see, e.g., 
ref. 17, Chapter III, 3.7). II 
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